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Abstract—Off-road autonomy implies high-dynamics in vary-
ing contexts which introduce numerous opportunities for con-
trollers to fail (both marginally and catastrophically). One major
reason for these failures is often that the full-stack system is
subject to scenarios that are deemed out-of-distribution (OOD)
with respect to the design of the original controllers. In this work,
we investigate a formalism for off-road OODs, collect a cross-
embodied dataset, describe the data lifecycle, and profile a suite
of baseline methods in their ability to accurately determine OOD
states for off-road autonomous systems. We find that the Moving
Average Derivative Threshold and Isolation Forest methods
provide strong baselines. We believe this initial investigation will
serve as a foundation for future methods and promote interest
in OOD discovery as it pertains to off-road autonomy.

I. INTRODUCTION

Robots deployed in autonomous off-road contexts generate
rich data streams as they move through the world. With the
popularity of data-driven methods increasing [1], alongside
the ubiquity of hardware which enables total information
capture [2], we are entering an era in which systems should
use their sensor streams to determine whether or not their
current behavior is supported by their nominal controllers. This
awareness can be useful for downstream risk-mitigation [3],
failure-recovery [4], and even sampling states to learn from
in the future [5]. However, it is not always straightforward
to determine what is considered nominal behavior and what
is not, especially in a generic way. This is made even more
challenging when taking into account the fact that some
controllers might possess learned components or have been
learned in an entirely end-to-end fashion.

The field of machine learning has begun to tackle this prob-
lem through the study of out-of-distribution (OOD) detection
and analysis [6], [7]. This refers to how well a model which
was trained on “in-distribution” (ID) data can generalize to
data which comes from a fundamentally different distribution
(often due to effects like domain-shift or label-shift). Although
this framework has been applied to robotics in previous works,
the majority have focused on the performance of perception
algorithms and visual modalities [8], [9]. Even fewer have
looked at OOD detection as a way to reason about the current
behavior as it pertains to robot state directly.

In this work, we investigate how to formalize OOD behavior
in the context of dynamic off-road autonomy. To achieve this,
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Fig. 1: The HOUND robot (left) and the Unitree A1 robot (right) following
trajectories along which OOD behaviors such as slipping, getting stuck, and
tipping over have occurred.

we consider the entire data lifecycle: including deployment,
data collection, filtering, data conditioning, dimensionality
reduction, and OOD discovery. We find that it is important
to scrutinize each of these steps carefully and consider the
holistic data lifecycle as the data is highly heterogeneous,
context-sensitive, and ever-evolving in deployed systems. We
apply this data lifecycle to two robot morphologies possessing
onboard autonomy (the HOUND and the Unitree A1) and col-
lect representative datasets for their behavior when deployed
in off-road environments. Given that they encounter shifts
in dynamics, scenarios for which their controllers were not
specifically designed, and difficulties with state estimation, we
hypothesize that OOD states are embedded in these datasests.

We test a set of baseline methods and evaluate their perfor-
mance on the different datasets. Following this, we propose a
set of methods we will explore in the future which make as
few assumptions as possible and require little to no tuning.



In summary, we make the following contributions:
• A formalization of OOD behaviors in off-road autonomy.
• A cross-embodiment dataset containing OOD states.
• A survey of baseline methods for OOD discovery.

II. METHODOLOGY

A. Robot Platforms & Data Collection

To explore out-of-distribution events in dynamic off-road
autonomous navigation, we examine both quadruped robots
and wheeled robots. Our chosen robot platforms are the
Unitree-A1, a quadrupedal robot, and the HOUND, a 1/10th-
scale four-wheeled off-road autonomy platform.

1) A1 Hardware: The A1 robot weighs 12 kg and features
legs that are designed for minimal inertia. It employs high
torque density electric motors with planetary gear reduction for
robust performance. Notably, it achieves precise ground force
control without relying on force or torque sensors. Its high-
performance actuators in the hip, thigh, and knee joints enable
comprehensive 3D control of ground reaction forces. The robot
is also equipped with contact sensors on each foot for contact
detection. Each of the A1’s actuators comprises a custom high
torque density electric motor paired with a single-stage 9:1
planetary gear reduction. The legs are serially actuated, with
the hip and knee actuators co-axially located at the hip joint of
each leg to optimize performance. Each joint of the robot can
deliver a maximum torque of 33.5 Nm and achieve a maximum
speed of 21 rad/s.

2) HOUND Hardware: The HOUND’s hardware architec-
ture is same as that of MuSHR [10]. An NVIDIA Jetson
Orin NX serves as the onboard single-board-computer (SBC),
chosen for its balanced attributes in terms of cost and size-
weight-and-power (SWaP) when compared to the Nano and
AGX variants. The physical platform weighs around 4 kg and
is capable of reaching speeds exceeding 12 m/s on tarmac
surfaces.

For both robots, each trajectory is represented as τj =

{s(j)i }Tj

i=0, where each s(j)i refers to the state at that time step.
3) A1 Data Parameters: The state vector s(j)i for the A1

robot is given by:

si :=
[
Qi ti

]⊺
ti :=

[
p v R ω

]⊺ ∈ R18

where p =
[
x y z

]⊺
, v =

[
ẋ ẏ ż

]⊺
, and R ∈ SO(3)

is a 3× 3 rotation matrix, and ω ∈ R3 represents the angular
velocity.

The joint state vector of the quadruped is given by

Qi =

[
qi

q̇i

]
qi :=

[
q1 q2 . . . q12

]⊺ ∈ R12

q̇i :=
[
q̇1 q̇2 . . . q̇12

]⊺ ∈ R12

qi and q̇i are the joint position and joint velocity state vectors
respectively.

4) HOUND Data Parameters:

si :=
[
Xw Yw Zw ϕ θ ψ Vb ωb Im

]⊺ ∈ R9

where Xw, Yw, Zw represent the world frame position, ϕ, θ, ψ
represent the world frame roll-pitch-yaw angles, Vb represents
the body frame velocity, and ωb represents the body frame
rotation rates, and Im represents the motor current [11].

5) Off-Road Testing and Data Collection: Both mobile
platforms were tested on uneven off-road terrains consisting
of grass, dirt, and marshy lands via teleoperation. We utilized
the controller for the HOUND shown in [11]. The A1 uses
the default whole body Model Predictive control (MPC) con-
troller. The A1 utilizes the identical sensors and onboard SBC
found in the HOUND’s backpack. An online data collection
pipeline is established for both the A1 and HOUND. After
collecting the data in ROS bags, we label anomalous events
by replaying the bags and cross-referencing with videos to
determine timestamps. Our analysis focuses on the trajectories
of the robots. We ensure all sensors are fully calibrated and
there is no chance of off-nominal behavior due to sensor drift
or corruption.

6) Data Preprocessing: The A1 and HOUND data are
sampled at frequencies of 500 Hz and 50 Hz, respectively.
Due to electromagnetic interference from the A1’s motors,
the motor PWM signals are susceptible to noise. To mitigate
this, a second-order Butterworth low-pass filter with a cut-
off frequency of 50 Hz is employed for the A1’s joint state
values. We opted for a cut-off frequency of 50 Hz as lower
thresholds would lead to unnecessary signal reduction, causing
signal attenuation rather than noise attenuation. The filter is
set to the same bandwidth and is uniformly applied to all input
signals during the preprocessing stage, irrespective of whether
individual signals necessitated filtering. This approach was
intentionally adopted to ensure data consistency and streamline
the preprocessing pipeline. By applying the filter universally,
we maintained uniformity in data processing, which facilitated
subsequent analysis and comparisons across the dataset.

B. Conditioning the data

For data preprocessing, a standardization followed by nor-
malization procedure is used. This approach helps to both
center the data around zero with a standard deviation of 1 and
scale it to a specific bounded range, such as between 0 and
1. The standardization process involves subtracting the mean
(µ) of each feature from the data and then dividing by the
standard deviation (σ). This is represented by the equation:

z =
x− µ

σ

Where:

x : Original value
µ : Mean of the feature
σ : Standard deviation of the feature



Fig. 2: Simple schematic of experimental process.

After standardization, the data is normalized using min-max
scaling to a specific range. The normalization equation is given
by:

xnorm =
x− min(x)

max(x)− min(x)

This process ensures that the data is both centered and
scaled appropriately, making it suitable for many machine
learning algorithms that benefit from standardized and nor-
malized input data.

C. Formalizing OOD Behavior

Consider an MDP M = (S,A, T,R) modelling the task of
locomotion of the A1 quadruped. Here, S refers to the state
space, A to the action space, T is the (transition) conditional
probability distribution for the next state given a pair of current
state and action, and R : (S×A) → R is a real-valued reward
function.

Given a policy π : S → A designed for this MDP and
an initial state s0 ∈ S, the execution of this policy for
time steps t ∈ {0, . . . , T} can be represented as a rollout
{(si, ai, ri)}Ti=0, where si ∈ S is the state visited, ai ∈ A is
the action taken, and ri ∈ R is the reward received at timestep
i. Throughout this rollout, for each timestep i, the next state
si+1 has the distribution fT (si+1 | si, ai) = fT (si+1 |
si, π(si)), which solely depends on the current state si. Hence,
the trajectory of this agent, given by the states τ = {si}Ti=0 can
be modeled as a Markov chain with the transition distribution
given by fT ′(s′ | s) = fT (s

′ | s, π(s)) for any states s, s′ ∈ S.
Policies such as π are designed to provide actions for any

state in S that result in high reward in the future and thus
also in expected behavior. However, often in practice they
provide useful actions only for a subset C ⊂ S, and their
performance deteriorate outside this set, due to factors such
as distribution shift between training set of a learned policy
and real-life conditions, the inherent instability of certain states
or the uncertainty in sensor measurements. However, this set
is often not explicitly computable due to the complexity of the
policy and MDP.

In this case, we can estimate the complement of C (denoted
C ′ = S \C) from sampled trajectories τ1, . . . , τN by labelling
time steps where off-nominal behavior that brings the agent
further from the task is observed. Denoting labels for each
trajectory j and timestamp i as τj as y(j)i ∈ {0, 1}, where
0 refers to nominal behavior and 1 refers to off-nominal
behavior, our goal is to estimate which states of an unseen

trajectory τ ′ = {s′i}Ti=0 belong to C without further access to
the underlying MDP or controller. A reasonable assumption
we make for this problem is that the agent usually encounters
states in C, where the nominal behavior is present. Then, any
state s′ ∈ C ′ would also be considered out-of-distribution
with respect to the “nominal” states. Specifically, we make
the assumption that P(s′i = c | s0) ≤ P(s′i = c′ | s0) for
c ∈ C and c′ ∈ C ′.

D. Working with High Dimensionality

Currently, our dataset for the A1 and HOUND includes
many features including linear/angular positions, velocities,
accelerations of the base and each joint. Each type of feature
lead to different trajectories over a rollout, for example, joint
positions follow a near-sinusoidal pattern whose phase depend
on the joint, whereas pitch and roll of the base are closer to
constant during nominal operation.

This high-dimensional setting poses a challenge to OOD
detection, since only a subset of the features are sensitive to the
perturbations that often occur, and the shift in these features
might have different patterns. For a simple baseline, we have
only selected the base orientation (roll, pitch, yaw values
in radians) of both robots for our OOD detection pipeline,
using the intuition that during near-crashes or tip-overs, base
orientation changes rapidly relative to nominal operation.
While all off-nominal operation is dependent on the task
and the resulting expectations about the robot’s behavior, we
acknowledge the need for a more general method that is able
to utilize the entire state, without knowledge of which features
are salient. In future work, we plan to use dimensionality
reduction methods such as sparse PCA (principal component
analysis) and DMD (dynamic mode decomposition) for better
accuracy and generalization.

III. EXPERIMENTS

Working with the base orientations over time, we have tested
4 baselines: random choice, moving average threshold, moving
average derivative threshold, and isolation forest. Here are the
descriptions of each method:

1) Random Choice: For each trajectory τj and timestep
i ∈ {0, . . . , Tj}, we sample f(τj , i) ∼ Ber(1/2) (where
f(τj , i) = 1 denotes OOD data at that timestep), where
each prediction is independently and identically dis-
tributed.

2) Moving Average Threshold: For each trajectory τj ,
after normalizing each feature with respect to the set of



observations of that feature, we take a moving average
of each feature separately with window size w = 300,
resulting in a set of averaged states {m(j)

i }Tj

i=1. For the
first w − 1 timesteps, to avoid NaN values we instead
use the average of all timesteps up to i for the signal
at timestep i. Then, we estimate the OOD labels by
f(τj , i) = 1(|m(j)

i | > C1) for a positive constant
C1 = 0.6, where 1(x) is the indicator function.

3) Moving Average Derivative Threshold: For each
trajectory τj and timestep i ∈ {0, . . . , Tj}. Taking the
time in seconds since the initial state as t(j)i ∈ R+, we
compute the same moving average data {m(j)

i }Tj

i=0 as
above, and then estimate the derivative at each timestep i

by
{
(dm/dt)

(j)
i

}Tj

i=1
. Then, we estimate the OOD labels

by f(τj , i) = 1(|(dm/dt)(j)i | > C2) for a positive
C2 = 0.7.

4) Isolation Forest: Moving average (and moving average
derivative) methods on normalized data create a global
threshold for how much the data deviates from its mean.
Conversely, an isolation forest 1 starts by taking the set
{s(j)i }Tj

i=0 ∈ τj and initializing some M = 300 kd-
trees, where each node represents a split axis-aligned
rectangular sub-region of the k-dimensional state space,
and children of a node create a partition of a region.
Then, each tree is extended by splitting a region into
half randomly until each data point in the region of a
leaf node has the same value, or when a max depth of
⌈log2(Tj+1)⌉ is reached. The average depth of each data
point is then higher when the data point is more likely to
be an outlier, and a ratio r = 0.3 of the data points with
maximum average depth are selected as outliers.

The hyperparameters w,C1, C2, r,M are selected manually to
maximize the accuracy for two labelled rollouts πN+1, πN+2,
one for each robot (A1 and HOUND). These rollouts are
held out from the rest of the analysis, and are only used for
hyperparameter search.

For each rollout and method, we estimate the OOD labels
{y(j)i }Tj

i=0 as {f(τj , i)}
Tj

i=0 and then consider the accuracy,
Jaccard (IoU) score and F1 score as metrics. The average
metrics over the A1 and HOUND datasets are given for each
method in Table I and Table II. Line plots of the features
over time are given for each robot type (A1, HOUND) and
data transformation (normalization, moving average, moving
average derivative) below in Figure 3 and Figure 4.

TABLE I: Average Evaluation Metrics for Different OOD Detection Methods
on A1

Method Accuracy Jaccard (IoU) F1 Score

Random Choice 0.498 0.250 0.385
Moving Average Threshold 0.427 0.353 0.494
Moving Average Derivative Threshold 0.623 0.484 0.613
Isolation Forest 0.756 0.391 0.532

1We use the scikit-learn [12] package for the Isolation Forest
algorithm.

TABLE II: Average Evaluation Metrics for Different OOD Detection Methods
on HOUND

Method Accuracy Jaccard (IoU) F1 Score

Random Choice 0.497 0.057 0.082
Moving Average Threshold 0.267 0.095 0.156
Moving Average Derivative Threshold 0.309 0.096 0.158
Isolation Forest 0.735 0.101 0.167

Fig. 3: The line plots of the selected features (roll, pitch, yaw) over time, with
data transformations applied to detect OOD behavior.

IV. CONCLUSION

With respect to the A1 dataset, we see that while Isolation
Method gives a higher accuracy than other methods, Moving
Average Derivative Threshold gives better F1 and IoU scores.
Since the OOD behavior appears less frequently than nominal



Fig. 4: The line plots of the selected features (speed, components of velocity,
motor input current) over time, with data transformations applied to detect
OOD behavior.

behavior in our dataset, label balance cannot be assumed
in this case, and thus F1 or IoU metrics are likely more
appropriate for measuring performance. While the Moving
Average Derivative Threshold resulted in the highest perfor-
mance in these metrics, we note that the Isolation Method has
comparable performance across A1 datasets. Compared to the
Random Choice, which is our naive baseline, both methods
provide a significant improvement in all metrics.

However, with respect to the HOUND dataset, we see that
the Isolation Forest method results in the highest performance
in all 3 metrics (accuracy, IoU and F1 score), while the IoU
and F1 metrics of Moving Average Derivative Threshold are

similar as well. Both methods still provide better F1 and IoU
scores than Random Choice, which indicates that the off-
nominal behavior observed during a real-life rollout correlates
with out-of-distribution states in the corresponding trajectories.
For this reason, we consider both methods strong baselines,
especially compared to Random Choice.

We will continue this work by comparing more sophisticated
unsupervised methods such as dynamics mode decomposition
to obtain results that minimize the use of heuristics, such
as manual dimensionality reduction or threshold tuning. We
will also expand our dataset by an order of magnitude so
that we can better train data-intensive models and test them
against our baselines. While our current dataset only considers
a small subset of the possible out-of-distribution states, it will
be extended to include different controllers and off-nominal
behaviors as well, enabling better out-of-distribution detection
and generalization. Finally, we will consider evaluating our
methods on externally collected datasets, especially as more
are released in the coming months. Our ultimate goal is to
develop and validate a method that can be used on arbitrary
off-road autonomy datasets to uncover the truly informative
and interesting underlying OOD moments embedded deep in
the data.
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